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STABILITY OF C O U E T T E  F L O W  OF AN I D E A L  F L U I D  W I T H  F R E E  B O U N D A R I E S  

V. K. Andreev and A. M. Frank UDC 532.29:516.90 

The linear and nonlinear stage of development of instability of Couette flow with two free 
boundaries is studied. It is established that instability occurs only for long waves, and the critical 
wave number is computed. In the presence of surface-tension forces, instability is preserved only 
at Weber numbers We ~< 1/3. 

As is known, Couette flow between two solid walls is steady in the case of both an ideal liquid [1] and 
a viscous liquid [2]. In numerical calculations [31, Frank detected instability of such flow in the presence of 
two free boundaries. 

In the present work, we consider the stability of Couette flow of an ideal liquid layer with free 
boundaries. Within the framework of the linear theory, it is shown that instability actually occurs only 
for disturbances with wavenumbers k < k. = 1.19968/I (I is the half-width of the layer). When capillary 
forces are taken into account, the instability is preserved for Weber numbers We <~ 1/3. The nonlinear stage 
of development of disturbances was studied by the particle method [3]. It turned out that high instability 
with formation of a vortex chain is observed only for rather long-wave perturbations. Shorter perturbations 
practically do not grow and do not lead to distortion of the free-boundary shape. The critical number k., 
obtained in the linear theory, is well confirmed in calculations. 

1. Linear  P r o b l e m  of Smal l  Pe r tu rba t ions .  We consider a layer of thickness 21 of an ideal 
incompressible liquid of constant density p. It is assumed that the liquid layer is surrounded by a passive 
gas, and the straight lines y = l and y = - I  are the free boundaries of the layer. It is possible to verify that 
Couette flow 

u = (ay,0), p--  po, a, po = const (1.1) 

satisfies the Euler equations within the layer and the free-boundary conditions. 
Let U(x, y, t), V(x,  y, t), and P(z,  y, t) be the perturbation of the velocity and pressure of the main 

flow (1.1). The problem of small perturbations of a liquid flow with a free boundary is generally studied in 
[4]. Flow (i.1) is described by the system 

Ut+ayUz + a v + l  p r = o ,  V t + a y v x + l  p y = o ,  Ux+ V , = O  (1.2) 
P P 

in the layer -oo  < x < oo, - l  < y < l; 

P(x,  +l, t) = O, R1,2t + ayR1,2z - V(x, +l , t )  = 0 (1.3) 

on the free boundaries. In (1.3), the functions Rl(z , t )  and R2(x,t) represent perturbations of the layer 
boundaries y = - l  and y = l, respectively. 

We seek a solution of problem (1.2) and (1.3) in the form of normal waves: 

(U, V, P, R1, R2) = [U(y), g(y), P(y), R1, R2] exp (-iwt + kiz). (1.4) 
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Here k is the wavenumber and w = wr + iwi is the complex frequency. The constants R1 and R2 on the right 
side of (1.4) represent the ampli tudes of waves propagating along the free boundaries with phase velocity ,yr. 
Substituting (1.4) into (1.2) and (1.3), we obtain 

k / p  1py 
i ( a y k - w ) U + a V +  = 0 ,  i ( a y k - w ) V +  = 0 ,  i k U + V ~ t = O  for - l < y < l ;  (1.5) 

P P 

P ( - - l )  = O, i ( a y k  - w ) R , , 2  - V(: l: l )  = O. (1.6) 

In studies of the stability of plane--parallel flows with solid walls, perturbations of the pressure P 
and the longitudinal velocity U are usually eliminated, and a spectral problem for the component  V - -  the 
Rayleigh problem - -  is obtained.  In our ease, by virtue of the specificity of boundary conditions (1.6), it is 
more convenient to el iminate the  functions U and V: 

i i V' (1.7) 
V = p(ay  - w / k ) k  P ' '  U = -~ 

(the prime denotes differentiation with respect to y). Subst i tut ing (1.7) into the first equation of (1.5), we 
obtain the equation for the  per turbed pressure 

p ,  2a p ,  
ay - w / k  - k 2 P  = 0 (1.8) 

with the boundary conditions 
P ( - l )  = P ( l )  = 0. (1.9) 

For a known function P ( y ) ,  the free-boundary perturbat ions are obtained from the second group of 
Eqs. (1.6). 

We introduce the following dimensionless variables and parameters: 

y (1.10) z =  l k l a '  n = kl ,  q =  a 

In this case, Eq. (1.8) takes the form z P "  - 2P'  - n 2 z p  = O. It has the general solution 

P = ~ C1 cos ( i n z )  - s in ( inz )  + C2 - s i n ( i n z )  - i n z  cos ( i n z )  (1.11) 
inZ 

where C1 and 6'2 are arbitrary constants. 
After simple but  ra ther  long calculations using boundary conditions (1.9), we obtain the following 

secular equation for q2: 
q2 = ,2  + 1 - coth (2n). (1.12) 

It is easy to verify the following properties of the function q2(n): 

1) l i~q2(n)  = 0, 

1 2 2) q2(n)- - - -~n 

3) n2 

lim dq2(n) daq2(n) 2 
.--.o d---"n-- = O, lim = - -  n--*O dn 2 3 '  

fo r  n ~ 0, 

fo r  n ---~ oo .  

A plot of the function q2(n) is shown in Fig. 1 (curve 1). Since q2 = (1 - n  tanh n)(1 - n  coth n), then 
n,  is actually a solution of the  equation tanh n = 1 In  and no ~ 0.8 is the min imum point of the function 
q2(n), i.e., q2(n) ~ - -9 .6 .10  -2. 

Therefore, Couet te  flow (1.1) is always unstable for 0 < n < n,  ~ 1.19968 and steady for n /> n, .  
Reverting to (1.10), it is possible to draw the following conclusions: 

1. If the  per turbat ion wavelength A > 2~rl/n,  ,~ 5.23738l, flow (1.1) in the layer is unstable and the 
growth coefficient wi decreases together with A when A ~< A0 = 27rl/no ,,~ 7.85398l and Wimax = alq(no)l  

0.30984a. For A > A0, wi increases. 
2. If the per turbat ion wavelength A ~< 27rl /n, ,  the flow (1.1) is steady. 
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2. Effect of Surface-Tension Forces. When surface forces are taken into account, the pressure on 
the perturbed free boundaries is proportional to their mean curvatures. Therefore, instead of the first group 
of boundary condition (1.3), we have 

P-cTRI=z=O for y = - l ,  P + c T R 2 z x = O  for y = l  (2.1) 

(~ > 0 is the surface-tension coefficient). Using the second condition of (1.6), the first equation of (1.7) 
and expression (1.11), instead of (1.9) we obtain the following conditions for the amplitudes of pressure 
perturbations: 

We dP "z2) We dP 
P(z2) z~ Tzz C = 0, e(~1) + z - ~ - ~ - ( z l )  = o. (2.2) 

Here Zl = - 1  - q/n, z2 = 1 - q/n, q = w/a, n = kl, and We = ~/pl3a 2 (We is a Weber number).  
After subst i tut ion of the  expression for P(z) from (1.11) into boundary conditions (2.2) a~d some 

transformations we obtain the  secular equation 

112 q 2 = n  2 + 2  n 3 c o t h 2 n w e - 2 n c o t h 2 n + l  

7 4he We2+4n3(c~176176  (2.3) 
+ sinh 2 2n 

For short waves (n --* co), q ~ -I- n 3 ~ - ~  and stability takes place. For long waves (n -* 0), from (2.3) 
we have q2 ~ n2(We _ 1/3) if We t> 4/3 and 

{ ' ,5 
q2 ~ n2 We - ~ + 2 We 4 2 We 2 11 2 

if 0 < We < 4/3. Therefore, for We ~< 1/3, there is long-wave instability of Couet te  flow (1.1). Moreover, in 
this case there is always a value of n ,  such that  q2(n) < 0 for n < n , .  For example, for We = 0.1 (curve 2 
in Fig. 1), we have n ,  ~. 1.305, no ~ 0.84, and q2(n0) ~ - 6 . 6 7 . 1 0  -2 and for We = 0.25 (curve 3), we have 
n,  ~ 2.3675, no ~ 0.88, and q2(no) ~-. - 2 . 1 7 . 1 0  -2. If We > 1/3, the function q2(n) >/0 for all wavenumbers. 

R e m a r k  1. Let y = 0 be an impermeable solid wall. Then, instead of (2.2) we have the conditions 

e ( z ~ )  z 2 dz  ( z 2 )  = o ,  ~-~ - = 0 

can show that  the per turbat ion  frequency is always real: 

co 2n - tanh n 4" q t a n h  2 n + 4nZtanh n We 
- = q = (2 .4 )  
a 2 
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Thus, the presence of only two free boundaries can lead to instability of Couette  flow (1.1). 
R e m a r k  2. Let f /(k,  y, t) be a Fourier transform of the function V(x, y, t) with respect to the variable z. 

Then, the solution of the initial boundary-value problem that  corresponds to (1.2) and (1.3) has the form 

i 
- k / e x p  ( - i k a ~ t ) f ( ~ )  sinh k ( y - ~ )  d~ + [ q  (t) e iq=t +c2(t) e -iq"t ] sinh ky + [dl (t) e iq=' +d2(t)  e -iq"t ] cosh ky, f / =  

where f (y)  = V0yy - kZV'0 [V0(y) is a Fourier transform of the initial value ~ (= ,y ) ] ;  q ( t ) ,  c2(t), di(t) ,  and 
dz(t) are limited functions as t -* co; the parameter q is determined by one of values (1.12), (2.3), or (2.4). 
Reverting to the second boundary  condition of (1.3), we obtain growth or damping of initial perturbations, 
as in the method of e lementary wave solutions. 

3. N o n l i n e a r  S t a g e .  The  nonlinear development of perturbations was studied by the particle method 
for an incompressible liquid [5]. The  method is based on simulation of liquid flows by means of a great number 
of material particles. The  particles are free, i.e., they are not at tached to a grid and, at the same time, 
they always move at a solenoidal speed, which ensures incompressibility of the flow. Equations of motion 
that are discrete in t are derived from the Gauss variational principle, and, hence, the method is completely 
conservative. One step in t ime consists, in essence, of two fractional steps, of which the first is the free motion 
of the particles under  the action of external forces, and the second is the projection in L2 of the resulting 
discrete velocity field onto a certain finite-dimensional space H of smooth solenoidal functions. In calculations, 
this space is specified by means of a basis which is usually constructed using B splines. A detailed description 
of the method and examples of problems solved, including test problems can be found in [3, 6, 7]. We point 
out some features typical of the problem considered. 

The unper turbed  liquid layer with two flat free boundaries y = +1 has thickness 2l and the linear 
velocity field (1.1) with a = 1, u = y, and v = 0. At the initial instant, particles in the layer are uniformly 
distributed along every coordinate. As the basis of space H we use finite solenoidal functions obtained by 
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applying the rot operator to two-dimensional quadratic B splines. The  splines are constructed on a uniform 
rectangular grid with steps h] and h2. The  length of the computational  domain is equal to 21r. On its lateral 
boundaries, we impose periodicity conditions, which are natural for the problem considered. In the method 
described, they are realized are realized as follows. A particle that  has reached the right boundary of the 
domain enters it at the left at once, as if the lateral boundaries of the computat ional  domain are joined 
together. The  basis functions tha t  lie near the right boundary participate in the formation of the velocity field 
near the left boundary  aad vice versa. 

In the absence of initial perturbations,  such flow with a linear velocity distribution is a practically 
exact solution for the  given method  (with accuracy up to convergence of iterations in the solution of the 
linear system in the  projection problem). Therefore, the  particle distribution remains uniform during the 
calculation, without  bending of the  layers sliding relative to each other, at least up to t = 20, up to which the 
calculations of per turbed flows were performed. 

In simulating instability at the initial instant, we impose the following perturbat ions on the linear 
velocity field: 

6u = 0, ~v = 0 . 0 1 l s i n  (kx) .  (3.1) 

Figure 2 shows an example of calculation of the development in t ime of rather long unstable 
disturbances with a dimensionless wavenumber kl = 0.9. The  calculation parameters  are as follows: layer 
thickness 2l - 0.6, a 60 x 25 grid with steps hi = 0.105 and h2 = 0.1, number  of particles 5880, step 
in t ime r = 0.1, t ime of comput ing one step on AT 486DX2 about 8 see. Initially, at t = 1.5, the free- 
boundary perturbat ions are slight. On the contrary, the perturbations of the flow field inside the layer are 
clearly seen because of small displacement of particles in the originally regular structure.  Further, at t > 10, 
the perturbations increase so tha t  the flow is rearranged, forming a chain of vortices that  are very similar 
to Kelvin-Helmholtz vortices, which arise on the interface in a two-layer liquid [8, p. 87]. Rotation of these 
vortices on the boundary  leads to occurrence of secondary Rayleigh-Taylor instability, which is clearly seen 
at t = 16 (see also Fig. 3d). 

Figure 3 shows results of calculation of perturbation propagation for different values of the 
dimensionless wavenumber k l  at the same t ime t = 20, except for case 3d, where perturbations grow too 
fast. The perturbat ions have the form (3.1) with a wavenumber k = 1, i.e., the wavelength is equal to 27r, and 
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the amplitude amounts to 1% of the maximum velocity in the layer U = l. The value of the wavenumber was 
determined by varying the layer thickness. The characteristic time scale T = l/U remained unchanged. It is 
evident that for kl/> 1.2, the perturbations do not lead to distortion of the shape of the layer. The amplitude 
of velocity-field perturbations in case 3a remains constant, about 1%, and in case 3b, it increases to 2%. The 
strong perturbations of the internal structure of the layer, which are clearly seen in the figures, practically in 
no way characterize the instantaneous velocity field. They are due to the slight bending of the liquid layers 
under the action of initial small perturbations and their subsequent deformation (of the type of breaking) 
under the action of shear flow. For kl < 1.2, the perturbations grow fast, forming a periodic vortex structure. 
Thus, the critical value of the wavenumber obtained from the linear theory kl = 1.19968 agrees very well with 
the numerical results. 

In conclusion, some words should be said about the control of the integral characteristics of the flow. 
Although, formally, the method is completely conservative, in real calculations, the system of simple equations 
is solved by iterative methods, and this introduces inaccuracy into the conservation laws. Direct verification 
showed that in the calculations illustrated in Fig. 3, the deviation of the horizontal momentum of the flow from 
the doubled momentum of half of the layer (since the total momentum is equal to zero) was not more than 
0.1%, and the relative deviation of the kinetic energy was less than 0.03%. We also monitored conservation 
of the total circulation, which varied within 0.01-4%, depending on the variant. The greatest error arose here 
in variant 3d where sharp peaks occurred at the free boundary. 
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